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ABSTRACT

The role of streamwise-spanwise vorticity interactions that occur in turbulent shear flows on flame/vortex

interactions is examined by means of asymptotic analysis and numerical simulation in the limit of small

Mach number. An idealized model is employed to describe the interaction process. The model consists of a

one-step, irreversible Arrhenius reaction between initially unmixed species occupying adjacent half-planes

which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear flow.

It is found that the interaction of the streamwise vortex with shear gives rise to small-scale velocity oscilla-

tions which increase in magnitude with shear strength. These oscillations give rise to regions of strong tem-

perature gradients via viscous heating, which can lead to multiple ignition points and substantially decrease

ignition times. The evolution in time of the temperature and mass-fraction fields is followed, and emphasis

is placed on the ignition time and structure as a function of vortex and shear strength.
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1. INTRODUCTION

The presence of streamwise vortices is now very well established in wall-bounded shear flows as well

as free shear flows either in transitional state or fully developed turbulent state. The investigations of

Klebanoff, Tidstrom and Sargent (1962), Wray and Hussaini (1984), and Zang and Hussaini (1987) provide

the evidence for the existence of streamwise vortices in low-speed boundary layers undergoing laminar-

turbulent transition. Such vortices have been observed in the buffer region of the turbulent boundary layers

by Blackwelder and Eckelmann (1979) for instance. The review of WiUmarth (1975) cite some earlier

observations of these phenomena. In free shear flows, the experimental studies (e.g., Lasheras and Choi

(1988) and the references therein), theoretical studies (e.g., Lin and Corcos (1984) and the references cited

therein), and the direct numerical simulations (e.g., Metcalf, et al. (1987) and Ashurst and Meiburg (1988))

have provided some insight into the origin and evolution of these streamwise vortices.

The evolution of a shear flow in the presence of streamwise vortices, or conversely, the dynamics of

vortices stretched by shear flow is of fundamental interest in fluid mechanics. A physically and geometri-

cally simple model of such interactions between spanwise and streamwise vorticity appears to have been

first proposed by Pearson and Abernathy (1984). Their model assumes an incompressible mean flow with

uniform shear which is then disturbed by the introduction of an Oseen vortex with its axis in the streamwise

direction. Corcos (1988) has studied this problem by a systematic asymptotic approach with a focus and

range different from that of Pearson and Abemathy. He showed that the streamwise velocity component

underwent severe distortions in a region of thickness v 1z3as a result of the streamwise vortex. These distor-

tions were damped out in the viscous core region, which is of size v 1_2. This model, however, is restricted

to the analysis of streamwise structures of turbulent non-reacting shear flows. We shall now focus our

attention to reacting flows.

An important problem in the general area of non-premixed combustion is the study of chemical reac-

tions in turbulent reacting flows. However, such flows are difficult to analyze and few theoretical studies

have been conducted. One such theoretical investigation, which forms the genesis of our model and is to be

described in more detail later, is that of Marble (1985), who developed a simple model problem which

locally describes an established thin flame that is being wrapped up by a small scale eddy. However, there

are certain important aspects, such as ignition and flame structure, which were not included within the

framework of the Marble problem.

We have completed a systematic analysis of the ignition process and the subsequent flame structure of

diffusion flames in vortex dominated flows using asymptotics and direct numerical simulation in the absence

of a shear flow (Macaraeg, Jackson and Hussaini, 1992). We considered a constant-density, one-step,

irreversible Arrhenius reaction between initially unmixed species of fuel and oxidizer occupying adjacent

half-planes, which were then allowed to mix and react in the presence of a single point vortex. Using large

activation energy asymptotics, particular attention was paid to the ignition regime as a function of the vortex

Reynolds number. For near equal initial temperatures of the fuel and oxidizer and expanding the tempera-

ture about its inert value, it was shown that the overall ignition time decreases slightly and then asymptotes

to a finite value as the vortex Reynolds number is increased from zero. For finite values of the activation

energy, a direct numerical solution was used to study post-ignition events. First, a hot spot develops within

the viscous core of the vortex (ignition) and progresses rapidly into a circular flame which grows in time

according to a similarity rule. Next, a tribrachial flame configuration evolves at infinite distance to the right
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and left of the origin. The diffusion flames emanating from this configuration then move toward and finally

merge with the flame in the reacted core region. We have recently extended the ignition study to flows

with counter rotating vortices (Kozusko, Macaraeg and Jackson, 1993).

The above mentioned problem of a flame interacting with a single point vortex is supposed to model

certain fundamental mechanisms of turbulent diffusion flames which form the basis of many propulsion dev-

ices. Since acoustic waves are always present in these combustion systems, the role of acoustics in such

flame/vortex interactions was investigated (Jackson, Macaraeg and Hussaini, 1993). The acoustic field was

considered to be a spatially uniform but time dependent pressure wave of small amplitude. This pressure

wave was then taken to have the sinusoidal form P (t) = PA sin (to t + _), where PA is the amplitude, to is

the frequency and @ is the phase, and was regarded as a single Fourier mode of a more general pressure

wave. It was concluded that for low frequencies, ignition is accelerated or significantly delayed depending

on the phase, while for moderate to high frequencies, ignition is always enhanced independent of phase.

Finally, an approximation for the ignition time was found by considering an equivalent homogeneous prob-

lem in which spatial variations are ignored. This leads to the following implicit formula for the "homogene-

ous" ignition time ring,given by

[ e 1"(_) d'c = ti0 ,
o

where ti°g is the ignition time in the absence of a pressure disturbance. Thus, this implicit formula relates the

ignition time when pressure disturbances are absent to the homogeneous ignition time when pressure distur-

bances are present. It was found that this homogeneous ignition time predicts the ignition trends very well,

and therefore was proposed as a good engineering approximation for obtaining the ignition times for the

more complicated flow fields.

The above mentioned ignition studies have been confined to vortices evolving in an otherwise con-

stant flow. However, shear is an important attribute of turbulent flows. Thus, the purpose of the present

study is to extend the above analysis so as to investigate the effects of the interaction between a streamwise

vortex and spanwise vorticity induced by the shear on ignition. We assume a simplified kinetic model con-

sisting of a one-step, irreversible Arrhenius reaction between unmixed species occupying adjacent half-

planes which are then allowed to mix and react in the presence of a streamwise vortex embedded in a shear

flow. We remark here that any realistic modeling of complex kinetics will necessitate a full numerical solu-

tion. Then questions arise as to the reaction rates and their dependence on temperature and the relative

importance of various reactions which entail thus rather large uncertainties. In a mathematical treatment of

combustion, the kinetic model has to be necessarily simple. The one-step irreversible Arrhenius model has

been extensively used with significant success in the study of low-speed combustion (e.g., Buckmaster and

Ludford, 1982). This model appears to cover the essential physics of the problem. In the last decade or so,

the asymptotic studies of combustion based on this model have significantly enhanced our understanding of

ignition, of flame stability and of diffusion flame structure in low subsonic flows. There is as yet no reason

to believe that this model will not play an equally significant role in enhancing our understanding of super-

sonic combustion. In any event, this idealization makes the problem amenable to asymptotic analysis and

thus provides a semi-analytical solution. The results can then certainly verify and in turn be verified by full

numerical simulations. An idealized model is now employed to describe the interaction process: the

f

i ¸¸ • ,:i f"



_i_'_:_ _i__
_'_i_ _I_ '

i .

, • _.j

streamwise vortex, assumed to be infinite in extent, interacts in time with the streamwise velocity com-

pone.nt associated with the spanwise vorticity. Initially, the streamwise velocity is assumed to be a linear

shear profile and the streamwise vortex resides along the fuel-oxidant interface. The reactants are then

allowed to mix and react. Emphasis is placed on ignition time and structure. In Section 2 the basic equa-

tions and assumptions are presented. Section 3 contains the ignition analysis and results, and the conclusion

is given in Section 4.

2. PROBLEM FORMULATION

In this section the problem for the time evolution of initially unmixed species occupying adjacent

half-planes which are then allowed to mix "and react in the presence of a vortex embedded in a shear flow

(Figure 1) is formulated. We assume that the flow is independent of the downstream direction x for all

time. Although it is not slrictly true for any real flow, it is consistent with experimental observations that

streamwise vortical structures in turbulent flows are essentially aligned with the flow and are of great

streamwise extent. Since we are interested in flows with vortical motion, the basic equations are

transformed into cylindrical coordinates (y, z) _ (r, 0) by the transformations y = r cos 0 and z = r sin 0.

If we define g to be the radial velocity and h to be the axial velocity, i.e., v = g cos0- h sin 0 and

w = g sin0 + h cos0, then the governing non-dimensional equations in cylindrical coordinates, neglecting

all dependency in x, reduce to

pT = P, (2.1a)

Pt + (Pg), + l(ph)e + pgr = 0, (2.1b)

p[ut +gUr + h ue] = 1r _ v2u' (2.1c)

11 1P[gt + g gr + h go - ] + -- = V2g - ho + (2.1d)
r r yM 2 _e _ 3

r r _,M 2 r P_e V2h - -_ + -;T go + Ko ,
(2.1e)

p[r,+gTr+h--ro] _l-l[p,+gp_+hpo]=l----_V2T+ (_/- 1)M2 • + _f2, (2.10
r "_ r RePr Re

1 V2F_ - n,p[FLt + g Fj,r + Fj,o]- ReSc
j = 1,2, (2.1g)

.i, ?

i

= "cDa pF1F2e -ze/r ,

3
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where V 2 is the two-dimensional Laplacian operator in cylindrical coordinates, tI) is the viscous dissipation

term, and K = gr + g/r + h o� r. Here, (u, g, h) are the velocity components in the (x, r, 0) directions,

respectively; p is the density; T is the temperature; P is the pressure; and F 1 and Fz the mass fractions of

the fuel and oxidizer, respectively. The chemical model is assumed to be a one-step, irreversible Arrhenius

reaction. The nondimensional parameters appearing above are the Schmidt number Sc = v/D assumed

equal for both species with D the species diffusion coefficient and v the kinematic viscosity; the Prandtl

number Pr ; the Reynolds number Re = Lv Vv / v where Lv and Vv are characteristic length and velocity

scales of the vortex; the Zeldovich number Ze = E/(R ° T_) with E the dimensional activation energy and

R o the universal gas constant; the Damkohler number Da = ta / tc defined as the ratio of the characteristic

diffusion time scale ta to the characteristic chemical time scale to; _i the heat release per unit mass of F 1; Y

the ratio of specific heats; • the Mach number M = V_ / a oowhere a_ is the characteristic speed of sound; and

finally x = t_ / ta is the ratio of the time scale of the vortex t_ to that of diffusion. The density, temperature,

pressure and mass fractions are nondimensionalized by their initial values p_, T_, P_ = p_R ° T_ and FI._,

respectively. Lengths are referred to L v , a characteristic lengthscale of the vortex, such as the core size, and

velocities are referred to Vv, the reference tangential velocity. The actual choice for these scales is given in

the next section. The relevant time scale is therefore tv = L_ / V_. The system (2.1) must be solved subject

to appropriate initial and boundary conditions chosen to represent a streamwise Oseen vortex evolving in a

shear flow.

3. IGNITION

At time t = 0, the reaction rate is exactly zero owing to the product F 1F 2 = 0. For t > 0, the fuel and

oxidizer begin to mix by diffusion, as well as by convection due to the presence of the vortex, and the reac-

tion rate is no longer zero. For small time, it can thus reasonably be assumed that the effect of the reaction

on the overall flow field is small. The solution for small time in which the reaction rate term is neglected is

known as the inert or chemically frozen solution, and will be denoted by the superscript I. In what follows,

we only consider the case of near equal initial temperatures and small Mach numbers, and take the asymp-

totic limit of large Zeldovich number (for the simplified hydrogen-oxygen system 2H2 + 02 _ 2H20 in

the presence of an inert N2, the dimensional activation energy E lies in the range 0(7-40 kcaYmole) yield-

ing Ze = 5-20 for T_ in the range 300-2000°K; e.g., Glassman, 1977; also, Drummond and Mukunda,

1988, in their numerical work on reacting mixing layers uses 7200 cal/mole). For large activation energies

(and hence large Zeldovich numbers), this assumption leads to the inert solutions T _ = pt = 1 + 0 (Ze-1),

provided that the Mach number is no larger than Ze -I/2 so that the viscous dissipation term can be neglected

to leading order. For larger Mach numbers the temperature field can no longer be considered uniform to

leading order since heating must take place by means of the dissipation tenn. The O (Ze-1) term is included

to allow for small initial temperature differences across the interface. Thus, the leading-order inert solution

corresponds to the constant density approximation prevalent in the combustion literature. As time increases,

more of the combustible mixes until, at some finite time, a thermal explosion occurs characterized by

significant departure from the inert. To analyze the ignition process, we determine the effect of the growing

reaction rate by expanding about the inert solution as

T = 1 + Ze -l T1 + 0 (Ze-2), p = 1 + Ze -1Pl + 0 (Ze-2), Fj = F I + 0 (Ze-1), (3.1a)



_i:!+:_'f

y ,

(u,g,h) = (ut,gt,h I ) + O(Ze-1), P = 1 + TM2[p ! + O(Ze-l)], (3.1b)

and take the asymptotic limit Ze _ _. The viscous dissipation term in (2.1f) in this limit is of the order

MRZe, and for a proper balance of the energy equation we set

M = M o/4_. (3.2)

Thus, solutions are also sought in limit of small Mach numbers. A comment about the size of the Mach

number and the relative importance of the viscous dissipation term in the energy equation is in order here.

For typical combustion systems the Mach numbers are of the order O(10-3), and so the role of viscous heat-

ing is negligible. Here, however, we have in mind propulsion devices in high speed flows. As such, the

Mach number within the mixing region can be relatively large. For example, in their study of compressible

viscous vortices, Colonius et al. (1991) report Mach numbers in the range of 0.0625 to 0.67 (the definition

of their Mach number is the same as used here). In our work, we have taken M 0 = _ M with M 0 lying

in the range (0.3-0.7), corresponding to Mach numbers of 0.01 to 0.22, respectively, for a typical value of

Ze=10. These values are well within physical ranges. Thus, in these flow situations, viscous heating can

indeed play a major role in the ignition dynamics.

The leading-order equations are given by

Pl + T1 = yMo2P t , (3.3a)

g' + ±h'. +
r r

_ 1
u[ + gl u[ + h t uto = -_eeV2Ut,

r

hI h: el=we[ ----g[ + gt gtr + __ gl° _ __ + 1 V2gt
r r

,, "r lhl + g' h/ + --h'. + + ' +
r r r _e --7 _-

(3.3b)

(3.3c)

(3.3d)

(3.3e)

,: ?,

?

h t 1 V 2T1 + (T-1) M°2 clY rl
TLt + gt Tl'r + -- TL°- (T- I)M°2P]- RePr _e + zF{ Ft2e "

r

(3.30

FJ, t + gl FJ, r + hl F ! 1 V 2F ], j = 1,2,
-7 i,0- ReSc

(3.3g)

= (h[- ht )2+ u:_+ 1 i2
r2 Uo.

(3.3h)

5
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where we have chosen the Damkohler number Da to be

e Ze
Da = -- (3.4)

This particular choice of the Damkohler number ensures that a distinguished limit exists, in that the reaction

rate term is of the same order in a Zeldovich number expansion as the time derivative terms (see, e.g.,

Buckmaster and Ludford, 1982). This implies that we are looking at the fast chemislry limit and thus selects

our chemical time scale.

We first see that the continuity and momentum equations (3.3b-e) are decoupled from the rest of the

system and thus, will completely determine u t, gl, h t and pt. At t = 0, we situate a point vortex at the ori-

gin and allow it to diffuse under the action of viscosity. Then, assuming the flow in the (r, 0) plane to be

axisymmetric, the induced non-dimensional flow field is given by (Lamb, 1932)

gl = O, hi = 1 [1 - exp(-Rer2/4 t)], (3.5)
r

pl(r, t) = -J htZ(F--'t) d7 -- - R_.._ee 2 (1 - 2e -n2/4 + e -n2/2) + Ei012/4) - EiOl212) , (3.6)
r r 4t

where 11 = r "4k--e/_-. The solution (3.5)-(3.6) is the solution for the incompressible Oseen vortex. The

velocity scale Vv has been chosen so that the corresponding potential vortex at Lv (i.e., at r = 1) is unity,

resulting in the relationship

F
--1,

2_Lv Vv

where F is the circulation parameter of the vortex. This particular choice shows that

Lv Vv F
Re - - Ro

v 2_v

where R o is the usual vortex Reynolds number. The streamwise velocity component u I is found from the

equation

__ 1
u[ + hI = Re v2

r
(3.7)

which is to be solved subject to the initial and boundary conditions,

U 1 =kl +k2z at t>0, r--->oo, 0<0<2rc, and t=0, r>0,0<0<2_, (3.8)

where kl is the nondimensional velocity at the centerline and k2 is the local nondimensional shear, defined

as the ratio of the time scale of the vortex to that of the shear. In this study we shall assume that k2 = O (1)

6
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so that the two time scales are comparable. At this order the streamwise vortex influences the streamwise

velocity component and hence the associated spanwise vorticity, but not vice versa.

We note here that equation (3.7) has previously been considered by several authors for non-reacting

flows. Pearson and Abemathy (1984), in the context of streamwise vortical structures found in turbulent

boundary layers, constructed solutions which were valid for all Reynolds numbers. Corcos (1988), in the

context of large scale structures found in mixing layers, has recently given an asymptotic solution in the

limit of large Reynolds number. Because these authors used different notations and because these solutions

are needed later for understanding certain aspects of ignition, we give below a summary of these solutions

for completeness.

To examine the time evolution of the streamwise Oseen vortex in a shear flow, we define

ut(r,O,t) = kl + k2[r sin0 + ti(r,0,t)], (3.9)

where a is the disturbed velocity component owing to the presence of the vortex. Upon substituting (3.9)

into (3.7), a is found to satisfy the convection-diffusion equation

1 1

at + _- [1 - exp(-Rer214t)] (r cos0 + ao) = Re V2u'
(3.10)

subject to homogeneous initial and boundary conditions. This equation was previously considered by Pear-

son and Abernathy (1984) (see their equation (14)), in the context of streamwise vortical structures found in

turbulent boundary layers. They employed the similarity type variable r2/4 t and defined (in our notation)

a =Real(rF(r)ei°). This choice led to an equation for the complex function F(r) which was solved

numerically after special treatment of the regular singular point at the origin. A different approach for solv-

ing (3.10), which is perhaps more instructive, is to first transform using the similarity variable

= r _ / _- and then introducing the definition

(_)cos0 + Uo01) sin0];
a = -_e [u,

(3.11)

this yields the coupled second-order differential equations,

1 Re ,, 1 • 1

- nu_) + 11--"-4[1- exp(-r1214)](u° + n)=ue + -_ue - --S_ ue ,q
(3.12a)

_i_%1_,:¸_ •
_'i_I _/ "i _,i _ _

': .... _(i

1 , Re ,, 1 ,_ __1
-_(Uo -'qUo)- "-_[1-exp(-'q2/4)]ue =Uo + "-_Uo 112 Uo

subject to the boundary conditions,

u, (0) = Uo(0) = u, (oo)= Uo(oo)= O.

7

, (3.12b)

(3.13)
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Primes denote ordinary differentiation with respect to the similarity variable 11, Ue is the amplitude of the

even mode, and uo is the amplitude of the odd mode. The system (3.12) depends only on the Reynolds

number Re.

The coupled system (3.12) for the odd and even components subject to (3.13) represents the influence

of the Oseen vortex on the streamwise velocity and is solved numerically using a 2nd-order finite difference

scheme with an appropriate stretching in rl. The solution to this system for a range of Reynolds numbers is

given in Figure 2. As the Reynolds number increases, the number of oscillations in each of the components

ue and uo increases while the region of oscillation moves away from the origin, thus establishing a core

region. The solution difference Ua =_lsin0+ ue cos0 + uo sin0, where Ua=q-_(u t -kl)/(k24-[), is

plotted in Figure 3 for 0=+_/2 and for various values of Re. From this figure the extent of the core

region is seen to grow as Re increases, and this core, once established, grows like 47.

To investigate the solution described above for large times, let t --->0%so that _1--->0 for fixed r.

Hence from (3.11) we have

a = lim 47
t-,_ _ [ue01)cos0 + Uo01)sin0]

= lira r[u,01)cos0 + Uo01)sinO]
_1_0 _1

= nm l[u,01)y +uoO1)z]
n--,o

= aly + bl z, (3.14)

where from (3.I2) and (3.13) it is easy to show that the asymptotic behaviour as 11 --* 0 is

u, = al_l + 0(_13), Uo = blrl + O013), (3.15)

where a 1 and b l are found numerically and are functions of the Reynolds number Re. Substituting (3.14)

into (3.9) yields

U ! =kl+k2[alY + (1 + bi)z ]. (3.16)

Comparing (3.16) to the initial condition (3.8), the effect of the vortex is seen to be the establishment of a

new equilibrium shear profile within the viscous core region. In addition, as Re _ oo the coefficients

al _ 0, b_ --->- 1, yielding ut --->k_; i.e., the streamwise velocity component becomes constant within the

core at large vortex Reynolds numbers.

The streamwise Oseen vortex induces additional spanwise vorticity. This is seen by considering the

total vorticity defined by _ = _x co + co__',where co is the streamwise vorticity component and _' is associated

with the spanwise vorficity

_u Ou

cO.__'= _y _ -ez 0y"
(3.17)

_,,iI •
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The magnitude of the spanwise vorticity, defined by G = I _'1, is a function of Re and, at leading order,

has the value

I I 1/2o0 = Ik21 a_ + (1 + bl) 2 , (3.18)

at the center of the core. Figure 4 is a plot of Go versus Re for k2 = 1. Note that as Re _ oo, Go _ 0

which implies that there are no gradients within the center of the core and thus the core is completely esta-

blished. From this figure, the core is 95% established at Re = 50 which is in agreement with Figure 3 where

a well defined core is clearly visible at Re = 100.

Even though the solution can be determined numerically for any Reynolds number, it is constructive

to consider the limit as Re --->oo. The leading-order solution in this limit is found by a direct asymptotic

investigation of (3.7) subject to the initial and boundary conditions (3.8). In the limit Re --->co, an outer

inviscid layer exists and is governed by the inviscid version of (3.7),

1 u° =0, (3.19)ue+ 7

where u° denotes the streamwise velocity u t in this outer layer. This equation is valid for r = O (1) and

t ,_ 0 (Re), so that the effect of a potential line vortex or an Oseen vortex on the streamwise velocity is the

same. The solution found by the method of characteristics is

U 0 = kl + k2 r sin00, (3.20)

where 00 is the characteristic

00 = 0 - -_ff2" (3.21)

As r _ 0, the solution (3.20) is singular indicating that the viscous terms in (3.7) must be retained.

We inlroduce the similarity type variable

r (3.22)
s = -3/_- .,

i;

,; .2. : ,

?••_ i ). :' i¸

;: 6, , , •

where Re -1 < < f << 1 and f is a nondimensional parameter that will be chosen in the course of the

analysis. Defining u M to be the dependent variable ut in the main layer, and letting

u M = kl + k2_-b_-[ - _ (s,O), (3.23)

we see that 3 satisfies the convection-diffusion equation

1 1 V 2 3. (3.24)
½(3 - s 3s) + _ [1 - exp(-Refs2/4)]30- fiRe
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To facilitate matching with the outer inviscid solution (3.20), we change to a new (non-orthogonal) coordi-

nate system in which the characteristic 00 is one of the coordinates. Thus, the above equation in terms of s

and 0o becomes

exp(-Regs2/4) fiOoaA(_ - s _ ) - _is2

- 8Re _s + gs 3 300 +-- + +---- (u)"s _ 8s 3 300 s 2 a0_
(3.25)

Balancing the viscous terms with the convection terms necessitates the choice

1 41-- -=-,
8R--_

or, in terms of 5,

= (4�Re) 1/3=_O (vl/3), (3.27)

which is in agreement with Corcos (1988). This layer is thicker than the inner diffusion layer of the vortex

which is of the order v m. For this scaling, exp(-ReSs2/4) is exponentially small in the distinguished

limit Re > > 1, and so again the effect of a potential line vortex or an Oseen vortex is the same. In order to

account for the diffusion of the vortex, an inner layer must be constructed. This is not necessary, as will be

shown below, since u M is not singular at the origin. The leading order equation in a k-expansion is given

by

1
- s ) = --z  OoOo, (3.28)

S _

}

which is solved by separation of variables and matched with the outer solution (3.20) to get

The solution in the main layer is now given by

The composite solution, valid in both the outer and main layers, is given by

3r 6 _ .

10
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To compare the asymptotic solution uc given in (3.31) to the exact solution u t given in (3.9), a plot of the

solution difference ua versus r I for 0 = +_/2 with Re = 10,000 is shown in Figure 5, where ua and 11 are

defined as before. From this figure we see that the asymptotic solution is in good quantitative agreement

with the exact solution shown in Figure 3c.

The magnitude of the spanwise vorticity at O (1) obtained by substituting (3.31) into the definition of

G and then letting 15 --_ 0, yields

G0- 15s2 _ I cos(0- )l
(3.32)

Figure 6 is a plot of Go versus s for 0 = g/2, k2 = 1, and 15= 1/5. The limit Re _ 0 corresponds to

G 0 _ 0, and so the large spikes have been created by the vortex.

With gX, h t and u t now known, the following equations can be solved for T1 and FJ

h I 1 ! 7"1
Tl,t + --Tl'°- V2T1 +(_I-1)M°2[PI + Re qlY] +'cF{F_e , (3.33)r RePr

FI ' + h I Ft 1 V2FJ, j = 1,2. (3.34)
t 7 j,o- ReSc

Note that the right hand side of the equation for the temperature is the sum of three terms: the diffusion

term, the term due to compressible effects, and the reaction term, respectively. The appropriate boundary

and initial conditions are given by

TI=O,F{=I,F_=O at t=0, r>0,0<0<_, and t>0, r---_,,o, 0<0<_, (3.35a)

TI=_r,Ftl=O, Ft2=dF1 at t=0, r>0, rc<0<2g, and t>0, r---_oo, rc<0<2g, (3.35b)

where 0 is the equivalence ratio defined as the ratio of the initial mass fraction of the fuel F 1,= to the initial

mass fraction of the oxidizer F2,_, and [_T is the parameter which allows for small initial temperature

differences across the interface. If 0 = 1, the mixture is said to be stoichiometric; if _ > 1 it is fuel rich;

and if _ < 1, it is fuel lean. Also, if [3T is less than zero, the oxidizer (species 2) is relatively cold compared

to the fuel (species 1); and if _T is greater than zero, it is relatively hot. As t increases, the solution for T 1

becomes unbounded at some finite time (tig) and location (Yig, zig). This characterizes the ignition regime.

Finally, with T1 determined, the density perturbation Pl can be found from (3.3a).

The case M o = 0 was discussed in the Introduction. Thus, the goal is to examine the influence of the

compressible term in (3.33) on ignition. However, it is instructive to first investigate its influence on the

temperature field in the absence of chemistry. We do this in the next section. The following section then

contains numerical results when chemistry is included.

3.1. Nonreacting Case

11



i< i _•

• ,i ¸

i.

In this section we investigate the influence of the compressible term in (3.33) on the temperature field

in the absence of chemistry. Since an exact solution of (3.33) with x = 0 is not possible, we shall examine

the equation in the limit Re > > 1. In this limit an outer inviscid layer exists and is governed by the inviscid

version of (3.33) for the outer variable T °. Transforming to the (r,Oo, t) characteristic coordinate system,

where 00 is given in (3.21), the temperature equation (3.33) becomes to leading order

lIE02  121[0 11 2tRePr -_r + r---T30----7 +-- +---- +---- (rf)r -_r r 3 300 r 2 3002

[ II }1- 4 +k_ _r + 2t 1 ft_+ _e 1M°2 _ U _ °° +_ o +O(Re-2), (3.36)

where _ = r sin00 and we have made use of the leading order outer solutions h I= 1/r + est and

pt = _ 1/(2r 2) + est, where est means exponentially small terms in Re, valid for t << O(Re). The lead-

ing order solution in a large Reynolds number expansion can be shown to be

T ° = Mo 2 -_-+k_ t +-_-sin(200)+ 3r 4 c°s20° +O(Re-2).
(3.37)

Note that the terms in the brackets are associated with the streamwise vortex and with the spanwise vorti-

city. In the absence of the spanwise vorticity (i.e., k2 = 0), the first term is positive showing that the effect

of compressibility is to heat the outer region of the viscous core. With T ° known, the density in the outer

layer can be determined from (3.3a).

As r _ 0, the solution (3.37) becomes singular so that the viscous terms in (3.33) must be retained.

Transforming to the (s,Oo, t) coordinate system, where s is defined in (3.22) and 00 = 0 - 1/_s 2, the tem-

perature equation (3.33) in the main layer becomes

1{I T_..t - _ _)RePr t + _s 3 300 +-- + +---- (TM)s -_s _s 3 300 s2 30o2

{I }14 2 1 U_o_2?s----Z+k_ _,+g_-s3_Oo +_- (3.38)

where, to leading order in 5,

lsino0+o, , (3.39)

To determine the proper expansion in the main layer and the appropriate matching condition as s --+ _, we

first expand the outer solution (3.37) as r _ 0, yielding

T ° =(y- 1)Mo 2 _ 1+ cos 200 +--
t S 4 T 4S 2

_3k_ t )sin (200)+_ + ... (3.40)

12
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We now expand T M as

TM1 =_f l + _)2f 2 + " "" , (3.41)

as 8 ---> 0. Substituting the above expansion into (3.38) gives the following problem at leading order.

1 (1f l t - -2-_f l, - Pr t s-gf 1°0°0 + (_'- 1)M°2 t'_s 4 k [2] }+ s---Texp _ cos200 .
(3.42)

The appropriate solution that matches with the outer solution (3.40) can be verified to be

fl- (]'- 1)M°2 _-lM]k_ tfll(s,Oo),
t s 4 + 4

+ (2 - Pr) exp - exp cos3Pr s 6 '

(3.43a)

(3.43b)

which decays as s --->_,. The first term of f 1 is associated with the streamwise vortex while f 11 is associ-

ated with the spanwise vorticity. As mentioned above, the leading order term f l is positive showing that

the effect of compressibility is to heat the outer region of the viscous core. Since we are primarily

interested in the influence of the spanwise vorticity, we plot in Figure 7 a graph of f 11 as a function of s

for Pr = 1, 0 = _ / 2, and (a) 5 = 1 / 5 and (b) 5 = 1 / 8. Note that the graph decays exponentially as s --->_o,

quadratically as s --->0, and is positive and oscillates for s = O(1). Also, the number of oscillations

increases as _ decreases but stays within some temperature envelope. Thus the effect of the streamwise vor-

tex is to introduce positive temperature fluctuations in the main layer which are damped out in the inner

viscous layer. This result will have important implications in the ignition regime when chemistry is

included, and will be brought out in the next section. The density can now be determined from (3.3a), and

is given by

pM = 2s2t _) 8f l + "'" (3.44)

As S --->0, T M and pM become singular suggesting that an inner viscous layer is present. To deter-

mine the proper scalings, we see from the expansion (3.44) for the density that the second order term is of

the same order as the leading order term when s --->0, yielding the balance s = O(Re-1/3). This suggests

the new variable for the inner layer

- _ (3.45)

which is the size of the viscous core. Expanding the temperature and density in the main layer in terms of

the inner variable and taking the limit Re --->_,,, the proper expansion for the inner variables are

T_ = Re/_, plt = Re 15, (3.46)

13
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where the superscript indicates variables in the inner layer.

number expansion are given by

+ T = yMo2/;

The leading order equations in a Reynolds

(3.47a)

^ ^

"_r (T_ + ) + (_/_ _ )2,
(3.47b)

where

h 0 = Rel/2 ]_0( _, t ), P0 = Re/;0(_,t) ; (3.48)

/_0 and/;0 can be found from (3.5) and (3.6). This system is axisymmetric and is to be solved subject to

appropriate matching conditions as _ ---> oo. We do not solve this system here, but rather note that the vari-

ables are bounded at the origin. Furthermore, this system is equivalent to that considered by Colonius et al.

(1991) if we rewrite their system in oar notation, and so we refer the interested reader to that paper for

further details.

3.2. Reacting Case

When chemical effects are included, the system (3.33)-(3.34) with boundary conditions (3.35)

describes the ignition regime which must be solved numerically. The numerical scheme utilized here is

described in Macaraeg et al. (1992). A small nonzero initial time is assumed in order to avoid nonphysical

initial transients which may lead to early ignition. For the cases which follow, k l is assumed to be zero, so

that the imposed shear is symmetric about the origin. Emphasis will be placed on the effects of the shear

strength parameter k2, so the other parameters will be held fixed. Here, we set _T = 0 and t_ = Pr = 1.

We begin the numerical computations by first setting x = 0 in (3.33). This allows a qualitative com-

parison between the numerically generated solution and the asymptotic solution derived in the previous sec-

tion. To this end, recall that the asymptotic solution indicates that the introduction of streamwise shear

gives rise to oscillations in the velocity field as well as the temperature field via the dissipation function.

Shown in Figure 8 are contour plots and cross-section cuts of T1 and TU for Re = 50, k2 = 1 and Mo = 0.7.

The quantity TU is computed by subtracting the numerical solution corresponding to Mo = 0 from T1. Thus,

TU is proportional to fll of the previous section and highlights the underlying oscillating temperature field.

The cross-section plots of T1 and TU versus z, taken through the vortex center, show that the overall tem-

perature perturbation has a single temperature peak in the center, whereas the temperature due to spanwise

vorticity has multiple peaks, even though their magnitude is small at this low shear strength. If the strength

of the shear is increased, the magnitude of these oscillations increases by k_, as can be seen in Figure 9

which displays plots of TU for three values of the shear strength parameter k2. This trend was predicted

earlier by the outer asymptotic solution obtained in (3.43), which indicates a proportionality with k_. Also

given are the corresponding cross-sections of the streamwise velocity component. Note that the magnitude

and number of oscillations increases with increasing shear, again consistent with the asymptotic solution

derived in the previous section. Figure 10 depicts contours and cross-sections of T1 for the same conditions

of Figure 9. Note that the temperature perturbation, T_, becomes dominated by the spanwise vorticity for

high values of shear.

14
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The multiple temperature peaks appearing for high shear values can have a dramatic effect on ignition

when chemistry is added. To illustrate this we show in Figure 11 contours and cross-section plots of the

temperature perturbation for Re = 10, Mo = 0.316 and two values of the shear strength parameter k2. For

k2 = 1, there is a single hot spot located in the vortex center, while for high shear (k2 = 20) there are two

ignition points, located in the main layer of the viscous core. The evolution in time of this double ignition

point is shown in Figure 12. Note that the temperature perturbation is strongly sheared, which gives rise to

multiple ignition points at a later time.

The influence of the streamwise shear on the ignition time is shown in Figure 13, where the maximum

temperature perturbation over the entire spatial domain is plotted against time. We note here that for weak

shear (k2 = 1), the ignition time is comparable to that obtained by Linan and Crespo (1976) in which

diffusion is the only mechanism present for mixing. Also, the ignition location is at the center of the vortex,

consistent with previous results (Macaraeg et al., 1992). As the strength of the shear increases, the ignition

time decreases indicating that mixing is enhanced owing to the presence of streamwise shear. In addition,

the ignition location no longer resides in the viscous core, but now multiple ignition points occur and are

located in the outer region of the core. This phenomena is due to the large temperature perturbations

induced by the interaction process between the streamwise and spanwise vorticity described in the previous

section.

4. CONCLUSIONS

The problem of a flame interacting with a vortex is assumed to model certain fundamental mechan-

isms of turbulent diffusion flames which form the basis of many propulsion devices. Streamwi_ shear,

which can be present due to large scale structures within the flow field or can be introduced as a mixing

enhancement technique, is always present in these combustion systems, so that it is important to study the

role of shear in such flame/vortex interactions. An unexplored fundamental problem of turbulent reacting

flows is thus the evolution of a shear f(ow in the presence of streamwise vortices, or conversely, the dynam-

ics of vortices stretched by shear flow. This problem is examined by means of asymptotic analysis and

numerical simulation in the limit of small Mach number. An idealized model is employed to describe the

interaction process which, among other assumptions, neglects spatial variations in the streamwise direction.

The model then consists of a one-step, irreversible Arrhenuis reaction between initially unmixed species

occupying adjacent half-planes which are then allowed to mix and react in the presence of a streamwise

vortex embedded in a shear flow.

It is shown that the effect of shear is to give rise to oscillations in the velocity field, which produces

localized regions of high temperature gradients via viscous heating. As the strength of the shear is increased,

these high temperature gradients give rise to multiple ignition points while substantially decreasing the

overall ignition times. This results in the enhancement of mixing brought about by the linear shear associ-

ated with the spanwise vorticity.

15
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